
Distributed Dynamic Delaunay Triangulation in d-Dimensional Spaces

Gwendal Simon• Moritz Steiner?� Ernst Biersack�

� : Institut Eurécom
2229 route des Crêtes
06904 Sophia-Antipolis

France

• : France Telecom - R&D Division
38 rue du Général Leclerc

92794 Issy-Moulineaux Cedex
France

? : University of Mannheim
Computer Science IV

A5, 6 68159 Mannheim
Germany

moritz.steiner@informatik.uni-mannheim.de
Tel: +49 621 181 2614 — Fax: +49 621 181 2601

Abstract

Voronoi diagrams and Delaunay triangulations have proved to be efficient solutions to numerous the-
oretical problems. They appear as an appealing structure for distributed overlay networks when entities
are characterized by a position in a d dimensional space. In this paper, we present some algorithms aiming
to maintain an overlay network matching the Delaunay triangulation of the participating entities. We
consider that entities are dynamic, that is, they can appear and disappear at any time. We first present
the algorithms for a two-dimensional space. Then, we show that these algorithms can be applied in a
three-dimensional space. Finally, we generalize them to d-dimensional space.

Keywords: Distributed Computing, Computational Geometry, Peer-to-Peer Systems

This paper is eligible to the Best Student Paper Award.
It contains ten pages. One additional page is devoted to appendix.



1 Introduction

Since their introduction one century ago, Voronoi
diagrams [28] and their dual — Delaunay triangu-
lations [5] — have proved to be elegant solutions to
many problems [3, 24].

First of all, most of the problems related to Com-
putational Geometry admit clever solutions based
on Voronoi diagrams. A first example is the post-
office problem. Given the Voronoi diagram of a set
of n entities in the plane, the entity closest to an ar-
bitrary point x can be found in time O(log n) [17].
Another example is the k−nearest neighbors: the k

closest pairs of a set of n entities can be computed
in time O((n + k) log n) [7].

Moreover, the Delaunay triangulation exhibits
some suitable properties for networking issues.
Thus, a Minimal Spanning Tree is a subgraph of
a Delaunay triangulation [26]. Besides, the length
of the shortest path in the graph between any pair
of entities is at most t times the euclidean distance
between these entities. Hence, a Delaunay triangu-
lation is a t−spanner with t ≈ 2.5 [15].

Finally, relevant cluster structures are well re-
flected by the Voronoi diagrams, which provide ef-
ficient solutions to both partitional clustering and
hierarchical clustering [19].

Several distributed applications based on shared
virtual spaces could benefit from a logical overlay
matching the Delaunay triangulation of entities.

For instance, Internet Coordinates systems pro-
vide to entities a position in a d-dimensional space
according to network characteristics [23, 25]. Some
of the most useful functionalities refer to distance
problems: determining the closest entity to another
one, ranking several entities by distance compari-
son. . . A Delaunay-based overlay network may nat-
urally be considered.

Another example are peer-to-peer file sharing
systems. Exploiting the semantic proximity be-
tween peers appears as an appealing way to im-
prove these systems [27, 18]. Among the challenges,
the automatic detection of interest-based commu-
nities is often raised. Coupled with an accurate
metric, this issue could be achieved by a Voronoi-

based overlay network.
Finally, recent works on large-scale Shared Vir-

tual Reality describe fully distributed systems in
which entities characterized by a position in a two-
dimensional space should be connected to all en-
tities within their virtual surrounding [16, 1, 12].
Among the approaches, a topology based on a De-
launay triangulation [12] exhibits numerous suit-
able properties. As Voronoi regions tessellate the
whole space, any subspace of the virtual world may
be seen as the union of Voronoi regions, so may
be monitored by the entities whose Voronoi region
overlaps the subspace. Therefore, a coherent vir-
tual space can be constructed if entities know the
Delaunay triangulation of their local virtual space.

Maintaining a Delaunay-based overlay in a dy-
namic distributed context has been studied [21, 2].
Unfortunately, the construction of the overlay net-
work relies on an angular feature, which is specific
to two-dimensional spaces. Therefore, the algo-
rithms can not be applied to higher dimensional
spaces. In [20], an overlay based on a Delaunay tri-
angulation is constructed on a wireless ad-hoc net-
work, but some features of wireless protocols ease
the detection of potential neighbors while the algo-
rithms also focus on a two-dimensional space.

In this paper, we describe local algorithms aim-
ing to maintain an overlay network, such that the
logical network formed by entities and links be-
tween them matches the Delaunay triangulation of
the set of entities in the space. We do not restrict
the study to two-dimensional spaces. Rather, the
algorithms intend to be applied in d−dimensional
space. Moreover, although addition and deletion of
entities in Delaunay triangulation are known to be
costly [22, 13], we aim to provide a set of algorithms
coping with dynamic entities.

The algorithms should conform to the context of
large-scale applications in the Internet. So, enti-
ties can appear and disappear at any time, but we
assume that entity failures are detected in a reason-
able time. Entities only know the entities to which
they are connected. That is, no global knowledge
is available and all algorithms remain local. There-
fore, the overlay network built and maintained by

1



the algorithms is scalable in the sense that all oper-
ations do not depend on the total number of entities
participating to the network.

We first present self-organizing algorithms in-
tended for the two-dimensional space. This first
part introduces the principle of the algorithms.
Then, we describe how these algorithms can be
adapted to three-dimensional space. We focus here
on exhibiting the correctness of the algorithms ap-
plied to higher dimensional space. Finally, we
quickly describe the algorithms in d−dimensional
space.

2 Model and Definitions

An entity is a process having communication ca-
pabilities. The entities are able to exchange mes-
sages through asynchronous reliable bidirectional
communication links. The system at time t is mod-
eled by a graph G(t) = (V (t), E(t)) where V (t) is
the set of entities and E(t) is the set of connections
(or edges or links). The set of direct neighbors of
an entity e at t is denoted K(e, t).

Each entity is characterized by a position in a
d−dimensional space. The Delaunay triangulation
of V (t), noted DT (t), connects entities into non-
overlapping d−simplices such that the hypersphere
of each d−simplex contains none of the entities in
its interior. The hypersphere that passes through
all entities of a d−simplex T is noted C(T ). We
would like to ensure that ∀t, E(t) = DT (t).

We assume in this paper that entities are in gen-
eral position, i.e. no d + 1 entities are on the same
hyperplane and no d + 2 entities are on the same
hypersphere. Finally, we consider that the position
chosen by a new entity at t is in the interior of the
convex hull of V (t).

3 Two-Dimensional Space

In two-dimensional space, the d−simplex is usually
called a triangle while the hypersphere is a cir-
cle. So, the Delaunay triangulation connects en-
tities such that each triangle contains none of the
entities within its circumcircle.

We also use in the following some useful prop-
erties of two dimensional spaces. We note [e, e′]
the line joining the entities e and e′ in T . The
directed angle ∠(e′ e e′′) is defined by the counter-
clockwise angle formed at e by [e, e′] and [e, e′′]. An
entity ei lies in the directed sector ∇(e′ e e′′) when
∠(e′ e e′′) = ∠(e′ e ei)+∠(ei e e′′). Also, we define
the successor of an entity e′ for an entity e0 by:

se0e
′ = e′′ ⇔ ∀e ∈ K(e0) : e /∈ ∇(e′ e0 e′′)

An entity e is able to easily determine the suc-
cessor and the predecessor of a neighbor thanks to
a list sorted in a counterclockwise order around e.
The methods insert and remove provide the in-
sertion and removal of entities, while predecessor

and successor return respectively the predecessor
and the successor of a neighbor.

3.1 Entity Insertion

The insertion of an entity in a Delaunay triangula-
tion has been extensively studied as it is the basis
of the Incremental Construction algorithm, one of
the most robust algorithms for the construction of
Voronoi diagrams [10, 11]. Figure 1 illustrates this
technique. It consists of (1) finding the triangle
enclosing the new entity, then (2) splitting this tri-
angle into three and (3) recursively checking on all
adjacent triangles whether the Edge flipping proce-
dure should be applied. As shown in Figure 2, the
edge flipping algorithm replaces the edge (b, c) by
the edge (a, z) if C(a, b, c) contains z.

We propose to use five distinct messages. Three
of them are devoted to the enclosing triangle detec-
tion: find-nearest, nearest and best. The two
latter are used to open a connection (hello) and
to notify another entity (detect).

We consider a new entity z joining the system
at t. The entity z chooses a position and initiates
the process by sending a message find-nearest

to any entity a ∈ V (t). We first have to detect the
closest entity to the position by using a greedy walk
algorithm, which is known to always succeed in a
Delaunay Triangulation [4].

An entity e replies to a find-nearest message
by a nearest message containing information on

2



Figure 1: Insertion of a new entity

z

b

a

c

Figure 2: Edge Flipping

the closest entity e′ ∈ K(e, t) to the queried posi-
tion. If e is closer to the position of z than all of
its neighbors, it sends a best message. This mes-
sage contains information on e itself and both the
predecessor e′ = s−1

e z and the successor e′′ = sez of
z in its neighbor list K(e, t). The entities e, e′ and
e′′ form the triangle enclosing the position chosen
by z, which immediately sends a hello message to
these three entities.

We now consider an entity a receiving a message
hello from the entity z at time t. In Algorithm 1,
the entity a is assumed to have k neighbors. The
notation used in the following relies on the situation
described in Figure 3.

a

b

c

z

d

e

Figure 3: Iterative Edge Flipping

The creation of triangles (a, b, z) and (a, z, c) may
have an impact on the edges (a, b) and (a, c). For
simplicity, we consider the case of the edge (a, b).
The other case is symmetrically identical.

The edge (a, b) is shared by two triangles (a, d, b)
and (a, b, z). The entity d is the opposite of z

through the edge (a, b) and the predecessor of b in
the list of neighbors. The edge flipping mechanism
imposes a to remove the edge (a, b) if C(a, d, b) con-
tains z. In this case, a sends to z a detect message
containing a description of d. Hence, z is able to

Algorithm 1: Hello z (received by a)
insert (z)1

pj = successor (z)2

pj−1 = successor (pj)3

while z ∈ C(a pj−1 pj) do4

send “detect pj−1” to z5

remove (pj)6

pj = pj−17

pj−1 = successor (pj)8

pj = predecessor (z)9

pj+1 = predecessor (pj)10

while z ∈ C(a pj pj+1) do11

send “detect pj+1” to z12

remove (pj)13

pj = pj+114

pj+1 = predecessor (pj)15

contact d by a hello message and the edge (z, d) is
created. Note that both a and b should test the va-
lidity of the edge (a, b). So, both entities implicitly
know that the edge (a, b) is discarded. It is possi-
ble to imagine an improved version of the algorithm
where one edge is only checked by one entity.

Now, the new entity z may be in conflict with the
triangle (a, d, e) where e is the opposite of z through
the arc (a, d). If z is within C(a, d, e), the edge (a, d)
should be replaced by an edge (z, e). And so on
recursively until the edge flipping algorithm does
not switch diagonals containing a.

In Alg. 1, the entity a tests all entities in the
clockwise from the successor of z (lines 4-8) until no
conflict is detected, then all entities counterclock-
wise from the predecessor are treated (lines 11-15).
The insertion of z is complete when no more mes-
sage transits in the network.

3



Lemma 3.1 A new entity eventually discovers all
of its neighbors.

Proof: We first show that the entity z eventually
discovers, in a given sector, all Delaunay neighbors.

We first assume an entity pi, which, at reception
of a message hello from a new entity z, detects
that the link with its neighbors pj ∈ K(pi, t) should
not be flipped with (z, pj+1). It is sure that no new
edge will be created in the sector ∇(pi z pj).

Assume now that all neighbors of pi should be
connected to z. Let pn and pn−1 be the neighbors of
pi such that pn = szpi and pi = szpn+1. It is impos-
sible that there exists an entity p in ∇(pn z pn−1)
to which z should be connected because this entity
p would have to be connected to pi. So no new edge
will be created in ∇(pn z pn−1).

The number of neighbors of an entity in a De-
launay triangulation is bounded by n − 1 where n

is the number of entities in system. So, there is at
most n − 1 sectors from which a detect message
may be issued. When all entities within a given
sector has been discovered, the number of sectors
not yet completed strictly decreases. Therefore, all
sectors are eventually completed.

Theorem 3.2 If the overlay network matches the
Delaunay triangulation of V (t), then it will eventu-
ally match the Delaunay triangulation of V (t)∪{z}.

Proof: Let DT (t+1) be the Delaunay triangulation
of V (t)∪{z}. The insertion of z is complete at t+γ.
Two reasons may prevent the set E(t + γ) to be
similar to DT (t+1): an edge existing in DT (t+1)
does not exist in E(t + γ) and an edge not existing
in DT (t + 1) exists in E(t + γ). We prove in the
following that both cases are impossible.

We assume that an edge (z, pi) exists in DT (t+1)
while it does not in E(t + γ). We note pi−1 and
pi+1 the predecessor and the successor of pi for the
entity z. The edge (z, pi) has not been created if
the two entities pi−1 and pi+1 did not detect that
C(pi pi−1 pi+1) contains z. However, if the edges
(z, pi−1) and (z, pi+1) exist, both entities pi−1 and
pi+1 previously received a hello message, so they
surely detects the edge (z, pi).

Assume now that there exists an edge e existing
in E(t+γ) and not in DT (t+1). It is sure that this
edge e intersects another edge e′. We consider that
e = (z, pi) and e′ = (pi−1, pi+1). If the edge (z, pi)
has been created, the entities pi−1 and pi+1 emitted
a detect message containing pi. But, an entity
sending a detect message also removes the edge in
conflict with the new edge. So, it is impossible that
(pi−1, pi+1) exists anymore.

The in-circle-test is the usual name for the test
whether an entity belongs to a circumcircle1. As
this operation is especially costly regarding other
computations, it is the main complexity measure
in Delaunay triangulation construction.

We show that the total number of in-circle-tests
required by the insertion of a new entity linked to
k neighbors is 4k − 6. But, this task is quite fairly
distributed among the neighbors as we also show
that the number of in-circle-tests performed by one
neighbor is less than k.

Another concern is the time complexity. We con-
sider asynchronous communication links, so it is im-
possible to give a bound on the time required for
the insertion of a new entity. However, it is pos-
sible to measure the number of causal operations:
the number of times the new entity should send a
hello after reception of a detect until it discovers
all neighbors. We show that the maximal number
of causal operations required by the insertion of a
new entity linked to k neighbors is less than k−3

2 .
The proofs of these results are in Appendix A.

3.2 Entity Deletion

We now focus on the deletion of an entity. Enti-
ties that leave the system can quickly compute the
new connections and inform their neighbors about
the new links they have to create. Thus, when the
set of neighbors of the faulty entity is known, the
optimal computation of the new Delaunay triangu-
lation has a complexity of O(k · log k) where k is
the number of neighbors of the entity [6]. Other

1C(a b c) contains z iff

˛̨̨̨
˛̨̨̨ ax ay a2

x + a2
y 1

bx by b2
x + b2

y 1
cx cy c2

x + c2
y 1

zx zy z2
x + z2

y 1

˛̨̨̨
˛̨̨̨ > 0

4



robust algorithms admit a complexity of O(k2) but
simpler implementations [22].

But, entities may crash with no graceful behav-
ior. So a neighbor e of a faulty entity z at t does not
know its new neighbors in DT (t + 1). Fortunately,
e can rely on triangulation properties. Especially,
it is sure that K(e, t) ∩K(z, t) contains the prede-
cessor and the successor of z in K(e, t).

We consider an entity z crashing at time t in
the graph G(t) = (V (t), E(t)) with E(t) matching
DT (t). We aim to determine E(t + δ) such that
E(t + δ) = DT (t + 1).

We use the usual message hello and an addi-
tional message lost. As soon as an entity e detects
the crash of z, it sends a lost message to both the
predecessor pi and the successor pj of the faulty
entity in K(e, t). This message contains z and the
opposite entity: pi for the message sent to pj and
vice versa. The notation used in the following refers
to the situation illustrated by Figure 4.

The lost message sent to both neighbors pro-
vides the material for the edge flipping. The edge
flipping mechanism consists of selecting a diago-
nal in a quadrilateral. The entity e considers the
quadrilateral (f, d, c, e) while the entity d considers
(f, d, b, e). There are four obvious cases.

a

c

b

d

e

fz

Figure 4: The entity z crashes

At first, neither c, nor b belongs to C(f, e, d). In
this case, the edge (d, e) should be created. Both
entities send a hello message to each other and
the edge is validated. For instance, the edge (b, c)
is created with this situation in Fig. 4.

In the opposite case, both c and b are within
C(f, e, d). The entities d and e do not emit any
other message than the lost message. However, it

is sure that only one entity should be connected to
f . When the entity f receives the lost messages, it
tests both situations and it chooses its neighbors in
the Delaunay triangulation. For instance, the edge
(b, f) is created in this situation in Fig. 4.

Finally, there are two symmetric cases where only
one entity belongs to C(f, e, d). For simplicity, we
consider that b belongs to C(f, e, d) while c does not.
In this case, e sends a hello message to d, mean-
while d sends a lost message to f containing b. An
edge is validated only when both entities receive a
hello message. So, e does not validate the edge
(e, d) as it receive no messages from d. On the con-
trary, when f and b receive the lost message from
d, they both send to each other a hello message
such that the edge (b, f) is eventually validated.

Once this process ends, the entities which have a
new neighbors — b, c and f in the case of Fig. 4
— re-emit a lost message to their neighbors. For
instance, f emits a lost message to b containing
e and one other to e containing b. It leads to the
creation of the edge (b, e). This process iterates
until no new edge should be created.

Theorem 3.3 If the overlay network matches the
Delaunay triangulation of V (t), then it will eventu-
ally match the Delaunay triangulation of V (t)\{z}.

Proof: The proof is straightforward. The depicted
algorithm resolves the situation for one triangle
shared by three neighbors of z. As z was connected
at t with a finite number of triangles, the algorithm
eventually creates the links between two-hops enti-
ties. The number of resulting triangles is strictly
less than the initial number of triangles. As it is a
recursive process, it eventually builds the Delaunay
triangulation of V (t) \ {z}.

4 Three-Dimensional Space

The three-dimensional Delaunay triangulation
problem is to connect n entities into non-
overlapping tetrahedra such that the circumsphere
of the four vertices of any tetrahedron of the tri-
angulation contains none of the given entities in its

5



interior [14]. In order to illustrate a Delaunay trian-
gulation in three-dimensional spaces, we propose in
Appendix B a stereopsis that may lead to perceive
the depth of entities.

In a two-dimensional space, an entity is able to
retrieve the Delaunay triangles from the set of its
neighbors coupled with the methods predecessor

and successor. Unfortunately the notions of
clockwise and counterclockwise have no meaning in
three dimensions. Therefore the tetrahedra of the
Delaunay triangulation have to be stored explicitly
by each entity. We note T (e, t) the set of tetrahedra
associated with the entity e at time t. The circum-
sphere of a tetrahedron defined by four entities a,
b, c and d is noted C(a, b, c, d).

4.1 Entity Insertion

The insertion of a new entity in three-dimensional
space relies on the same principles than in two-
dimensional space. First, the nearest entity to the
position of the new entity z is determined. Then,
the tetrahedron containing z is split. Following, all
tetrahedra in conflict with z are detected by the in-
sphere-test2. Finally, a flipping mechanism is used.

a

b

z

c

d

Figure 5: Splitting the enclosing tetrahedron

As in Section 3.1, the detection of the en-
closing tetrahedron is managed by the messages
find-nearest, nearest and best. This process
ends when a message find-nearest is received
by an entity a which is the closest to the posi-
tion of z. The entity a has to detect the tetra-

2p ∈ C(a, b, c, d) if

˛̨̨̨
˛̨̨̨
˛̨

ax ay az a2
x + a2

y + a2
z 1

bx by bz b2
x + b2

y + b2
z 1

cx cy cz c2
x + c2

y + c2
z 1

dx dy dz d2
x + d2

y + d2
z 1

px py pz p2
x + p2

y + p2
z 1

˛̨̨̨
˛̨̨̨
˛̨ > 0

hedron T ∈ T (a, t) enclosing z by the following
method. A face 4 of a tetrahedron T partitions
the space into two subspaces. The boolean func-
tion same-side(4, e, z) returns true if e and z

are in the same subspace regarding to 43. Let
oppositeT (4) be the entity in T which does not
participate to 4. An entity z belongs to a tetrahe-
dron T if:

∀4 ∈ T, same-side(4, oppositeT (4), z) = true

The entity a successively tests all the tetrahedra
in T (a, t) until it detects T . It then sends to z a
message best containing T .

As illustrated in Figure 5, a new entity z belong-
ing to a tetrahedron T = (a, b, c, d) splits it into
four tetrahedra T1 = (a, b, c, z), T2 = (a, b, d, z),
T3 = (a, c, d, z) and T4 = (b, c, d, z). Note that pre-
vious connections between a, b, c and d still remain
although the tetrahedron T does not exist anymore.

Following, the new entity z sends a message
hello to the four entities of T . It contains the
tetrahedra that should be created. In the example
of Fig. 5, the entity z sends to b a messages hello
containing the three tetrahedra T1, T2 and T4.

We consider now the entity b receiving the mes-
sage hello. We restrict the study to the tetrahe-
dron T1 = (a, b, c, z) for simplicity. In the same
manner than in Alg. 1, the entity b has to verify
whether z is in conflict with any known tetrahedra.
In two dimensions, the edge flipping mechanism in-
volves two triangles. In three dimensions, b should
consider two tetrahedra as figured in Figure 6. Let
e be the entity such that (a, b, c, e) ∈ T (b, t). The
entity e is the opposite of z through the face (a, b, c).
If z belongs to the circumsphere of (a, b, c, e), then
both (a, b, c, e) and (a, b, c, z) should be discarded.
This is illustrated by the figure on the right. The
resulting tetrahedra are T11 = (a, b, z, e), T12 =
(a, c, z, e) and T13 = (b, c, z, e). This operation is
called the 2− 3−flip.

3same-side((a, b, c), e, z) =true if˛̨̨̨
˛̨̨̨ ax ay az 1

bx by bz 1
cx cy cz 1
ex ey ez 1

˛̨̨̨
˛̨̨̨ ∗

˛̨̨̨
˛̨̨̨ ax ay az 1

bx by bz 1
cx cy cz 1
zx zy zz 1

˛̨̨̨
˛̨̨̨ > 0

6



a

b

e

c

z

a

b

e

c

z

Figure 6: Two tetrahedra may be split into three
tetrahedra

In this case, b should immediately inform z that
(1) e should be considered as a new neighbors and
(2) the tetrahedron (a, b, c, z) should be discarded.
It is achieved by a message detect containing both
e and (a, b, c, z)4.

Algorithm 2: hello z T1 T2 T3 (rec. by a)
Q.put (T1)1

Q.put (T2)2

Q.put (T3)3

while Q 6= ∅ do4

Ta ← Q.pop ()5

face ←4 ∈ Ta : opposite Ta(4) = z6

Tb ← T ∈ T (a, t) : face ∈ T7

if z ∈ C(Tb) then8

Ti, Tj , Tk ← split (Ta, Tb)9

Q.put (Ti)10

Q.put (Tj)11

Q.put (Tk)12

e← opposite Tb
(face )13

send “detect e Ta” to z14

remove Tb from T (a, t)15

else16

insert T1 in T (a, t)17

Upon reception of this detect message, the en-
tity z removes T1 from T (z, t) and adds T11, T12

and T13 to T (z, t). Then, it sends a new message
hello to the entity e with the three new tetrahedra.

Following, the entity b uses the recursive process
with both T11 and T13. If we consider, for instance,

4Entities a and c perform the same in-sphere test. So,
in a simplified version of the algorithm, it is not mandatory
that b notifies a and c that (a, b, c, z) and (a, b, c, e) are not
anymore in the Delaunay triangulation.

the tetrahedron T11, the entity b first looks for the
tetrahedron T111 sharing the face (a, b, e) with T11.
Then, it verifies whether the new entity z belongs
to C(T111). If so, b splits the two tetrahedra T11

and T111 into three tetrahedra and sends another
message detect to z.

This process terminates when b does not split any
new tetrahedron. The entity b should then decide
to close connections with the entities with which it
does not share any face of existing tetrahedra.

The pseudo-code of the treatment at reception of
a message hello is detailed in Algorithm 2. The en-
tity a receives the notification of three new tetrahe-
dra T1, T2 and T3. It puts them on a queue Q man-
aged by a first-in-first-out policy (line 1-3). Then, it
retrieves the first tetrahedron, the face that should
be tested and the opposite tetrahedron (line 4-6).
If the in-sphere-test fails, the new tetrahedron is
stored (line 17). Otherwise, the new tetrahedron
should be split and the recursive process is achieved
by putting the resulting tetrahedra in the queue
(line 10-13). In this case, a sends a message detect
to the new entity (line 14-15).

4.2 Entity Deletion

As in Section 3.2, we consider the abrupt crash of
an entity z at time t. None of its former neighbors
can know all entities in K(z, t). The algorithm de-
scribed in the following relies on the same principle
as in Section 3.2.

Assume an entity a ∈ K(z, t) notices the crash
of z. The entity a constructs tetrahedra contain-
ing itself and all possible combinations — accord-
ing to the in-sphere-test — of entities e belonging to
tetrahedra Tz ∈ T (a, t) containing z: e ∈ T : T ∈
T (a, t) ∩ T (z, t). For instance, if T (a, t) contains
Tz1 = (z, a, b, c) and Tz2 = (z, a, b, d), the entity
a builds a new tetrahedron Tzn = (a, b, c, d) and
removes Tz1 and Tz2 from T (a, t). Finally, the en-
tity a sends a lost message to these entities. The
message contains the faulty entity z and the new
tetrahedra.

We now consider the entity c upon the reception
of a lost message sent by a. If c has already noticed
the crash of z and has already built the tetrahedron

7



Tzn = (a, b, c, d), the algorithm stops. If Tzn is in
conflict with an entity e ∈ K(c, t), a 2-3 flip is done
on Tzn with e and a lost message is emitted for the
notification that Tzn is not a Delaunay tetrahedron.
On the contrary, if c did not detect the failure of
z, it should work as a did. That is, it retrieves
all tetrahedra Tz ∈ {T ∈ T (c, t) : z ∈ T}, then it
builds the new tetrahedra from the entities in Tz

and sends some lost messages to them.

Theorem 4.1 If the overlay network matches the
Delaunay triangulation of V (t), then it will eventu-
ally match the Delaunay triangulation of V (t)\{z}.

Proof: All entities in K(z, t) eventually notice the
crash of z (by a failure detector or by a lost mes-
sage). An entity a ∈ K(z, t) then removes all tetra-
hedra containing z from T (a, t). Thus all tetrahe-
dra containing z are eventually removed from the
topology.

Assume now a tetrahedron Tzn built by a. If an
entity b /∈ K(a, t) is in C(Tzn), the conflict is not
first noticed. But the entity a sends a lost mes-
sage to all entities involving in Tzn. If Tzn is not
a Delaunay tetrahedron, one of the receivers is a
neighbor of b. A 2-3 flip is performed on Tzn with
b and the tetrahedron is not considered anymore.
In [9, 29] it is shown, that incremental topological
flipping always leads to a correct Delaunay trian-
gulation.

5 d−Dimensional Space

Three observations may lead to the generalization
in d−dimensional spaces. First, an entity enclosed
in a d−simplex splits it into d + 1 d−simplices.
For instance, a 2−simplex, namely triangle, is split
into three triangles and a 3−simplex — or tetrahe-
dron — is split into four tetrahedra. Secondly, two
d−simplices can be split into d d−simplices. Thus,
two triangles generate two triangles while two tetra-
hedra result in three tetrahedra. This operation
is called 2 − d−flip. Finally, several papers inves-
tigates the behavior of the flipping mechanism in
d−dimensional space. Thus, an incremental algo-
rithm for the triangulation construction is proposed

in [29] and, at a later time, the flipping mechanism
has been proved to always succeed in constructing
the triangulation [9]. Therefore, it is natural to
generalize the algorithm previously described.

We begin by generalizing the first part of the al-
gorithm. The closest entity to the position chosen
by the new entity z is eventually reached after suc-
cessive exchanges of find-nearest and nearest.
This entity determines the d−simplex T enclosing
z and sends to z a best message containing the
description of T . After the reception of the best

message, the new entity z splits the simplex T into
d+1 non-overlapping d−simplices and sends a mes-
sage hello to its d + 1 new neighbors.

We then generalize the recursive process. We
consider the entity b at reception of a message
hello containing a d−simplex T1. Let � be the
(d − 1)−simplex generated by all the entities in-
volved in T except the new one z. The entity b can
retrieve the d−simplex T2 which shares � with T1.
The in-hypersphere-test is applied on T2. If the en-
tity z belongs to C(T2), the entity b sends a message
detect to z. The edge flipping mechanism results
in discarding T1 and T2 and creating d d−simplices
T11, T12 . . . T1d.

Finally, as described in Sec. 4.1, the entity b

iteratively tests all the d−simplices until no new
d−simplex is created.

In the same manner, the Entity Deletion al-
gorithm in d dimensions is very similar to the
3−dimensional one.

The entity z crashes at t and none of its for-
mer neighbors has connections to all of entities
of K(z, t). We consider an entity a ∈ K(z, t)
which notices the crash of z. It first retrieves
the d−simplices Tz ∈ {T ∈ T (a, t) : z ∈ T}.
Then the entity a builds — according to the
in-hypersphere-test — all d−simplices from the
set of entities involving in Tz. Assume, for in-
stance, that z and a were linked through the d-
simplices Tz1 = (z, a, b, e0, . . . , ed−4, c) and Tz2 =
(z, a, b, e0, . . . , ed−4, d). The crash of z leads a to
remove Tz1 and Tz2 from T (a, t) and to build a
new d-simplex Tzn = (a, b, e0, . . . , ed−4, c, d).

Following, the entity a sends a message lost to

8



the entities involving in the new d−simplices. This
message contains the faulty entity z and the new
d−simplices. Upon the reception of a lost mes-
sage, the entity c performs the in-hypersphere-test
on Tzn with every entity e lying on the opposite of
the (d − 1)-simplex of Tzn. The new d−simplex is
kept if the test fails while a 2− d flip is applied on
Tzn if e belongs to C(Tzn).

6 Conclusion

In this paper, we present a set of algorithms that
dynamically maintain a distributed overlay network
that matches the Delaunay triangulation of the en-
tities. The entities can have a position in any
d−dimensional space. We consider here the ar-
rival of new entities and the crash of an entity. We
show that the algorithms we propose succeed in re-
constructing the Delaunay triangulation through a
self-stabilization scheme. The algorithms proposed
for three and d dimensions are very similar, whereas
in 2-dimensions it is possible to rely on an angular
feature, that is not available in higher dimensions.

We intend to use the protocol in 3−dimensions
for shared virtual worlds. Especially, we may apply
it in the Solipsis [16] platform.

One of the main drawbacks of these algorithms is
the greedy walk needed to detect the entity closest
to the queried position. Some recent studies [8]
show how to construct small-world networks by
adding only one edge between two entities in the
overlay. In these small-world networks, a basic walk
is guaranteed to succeed in polylogarithmic time.
We will try to transform the Delaunay triangula-
tion to a small-world network, such that the de-
tection of the closest entity could be substantially
more efficient.

Acknowledgment

We would like to thank Antoine Pitrou who first
had the intuition of the deletion algorithm in two-
dimensional space and Joaqúın Keller who encour-
aged and supported this study.

References

[1] A.Bharambe, S. Rao, and S. Seshan. Mercury:
a Scalable Publish-Subscribe System for Inter-
net Games. In Workshop on Network and Sys-
tem Support for Games (Netgames’02), 2002.

[2] F. Araujo and L. Rodriguez. Geopeer: A
location-aware peer-to-peer system. Technical
report, Faculdade de Ciências da Universidade
de Lisboa, Portugal, 2001.

[3] F. Aurenhammer and R. Klein. Voronoi Dia-
grams. In Handbook of Computational Geom-
etry, pages 201–290. Elsevier Science Publish-
ers, 2000.

[4] P. Bose and P. Morin. Online Routing in Tri-
angulations. In International Symposium on
Agorithms and Computation, 1999.

[5] B. Delaunay. Sur la sphère vide. Otdelenie
Matematicheskii i Estetvennyka Nauk, 7:793–
800, 1934.

[6] O. Devillers. On Deletion in Delaunay Trian-
gulations. In Symp. on Computational Geom-
etry, 1999.

[7] M. T. Dickerson, R. L. Drysdale, and J-R.
Sack. Simple Algorithms for Enumerating
Interpoint Distances and Finding k−Nearest
Neighbors. Int. Journal of Computational Ge-
ometry and Applications, 2:221–239, 1992.

[8] P. Duchon, N Hanusse, E. Lebhar, and N. Sch-
abanel. Could Any Graph Be Turned Into a
Small World. Technical Report 62, Labora-
toire de l’Informatique du Parallèlisme (LIP),
2004.

[9] H. Edelsbrunner and N. R. Shah. Incremental
Topological Flipping Works for Regular Trian-
gulations. Algorithmica, 15:223–241, 1996.

[10] P. Green and R. Sibson. Computing Dirich-
let Tesselations in the Plane. The Computer
Journal, 21:168–173, 1978.

9



[11] L. Guibas, D. Knuth, and M. Sharir. Random-
ized Incremental Constructions of Delaunay
and Voronoi Diagrams. Algorithmica, 7:381–
413, 1992.

[12] S-Y. Hu and G-M. Liao. Scalable Peer-to-
Peer Networked Virtual Environment. In
Network and Systems Support for Games
(NetGames’04), 2004.

[13] C. Icking, R. Klein, P. Koellner, and L. Ma.
Java Applets for the Dynamic Visualization of
Voronoi Diagrams. Computer Science in Per-
spective, Springer-Verlag, 2003.

[14] B. Joe. Construction of Three-Dimensional
Delaunay Triangulations Using Local Trans-
formations. Computer Aided Geometric De-
sign, 8:123–142, 1991.

[15] J. M. Keil and C. A. Gutwin. Classes of
Graphs Which Approximate the Complete Eu-
clidean Graphs. Discrete and Computational
Geometry, 7:13–28, 1992.

[16] J. Keller and G. Simon. Solipsis: A Massively
Multi-Participant Virtual World. In Interna-
tional Conference on Parallel and Distributed
Techniques and Applications (PDPTA’03),
2003.

[17] D. G. Kirkpatrick. Optimal Search in Planar
Subdivisions. SIAM Journal on Computing,
12(1):28–35, 1983.

[18] F. Le Fessant, S. Handurukande, A-M. Ker-
marrec, and L. Massouli. Clustering in
Peer-to-Peer Sharing Workloads. In Inter-
national Workshop on Peer-to-Peer Systems
(IPTPS’04), 2004.

[19] I. Lee and V. Estivill-Castro. Polygonization
of Point Clusters through Cluster Boundary
Extraction for Geographical Data Mining. In
Proceedings of the 10th International Sympo-
sium on Geospatial Theory, Processing and
Applications, 2002.

[20] X.Y. Li, G. Calinescu, and P-J. Wan. Dis-
tributed Construction of a Planar Spanner and
Routing for Ad Hoc Wireless Networks. In
Proceedings of IEEE Infocom, 2002.

[21] J. Liebeherr and M. Nahas. Application-layer
multicasting with delaunay triangulation over-
lays. IEEE Journal on Selected Areas in Com-
munications, 20(8):1472–1488, October 2002.

[22] M-A. Mostafavia, C. Gold, and M. Dakow-
iczb. Delete and Insert Operations in
Voronoi/Delaunay: Methods and Applica-
tions. Computers & Geosciences, 29:523–530,
2003.

[23] T. E. Ng and H. Zhang. Predicting Inter-
net Network Distance with Coordinates-Based
Approaches. In INFOCOM’02, 2002.

[24] A. Okabe, B. Boots, and K. Sugihara. Spa-
tial Tesselations: Concepts and Applications
of Voronoi Diagrams. John Wiley and Sons,
2000.

[25] M. Pias, J. Crowcroft, S. Wilbur, T. Harris,
and S. Bhatti. Virtual Landmarks for the In-
ternet. In International Workshop on Peer-to-
Peer Systems (IPTPS’03), 2003.

[26] M. I. Shamos and D Hoey. Closest-Point Prob-
lems. In IEEE Symposium on Found. Comput.
Sci. (FOCS’75), pages 151–162, 1975.

[27] K. Sripanidkulchai, B.Maggs, and H. Zhang.
Efficient Content Location using Interest-
Based Locality in Peer-to-Peer Systems. In
INFOCOM’03, 2003.

[28] G. Voronöı. Nouvelles applications des
paramètres continus à la théorie des formes
quadratiques. Journal für die Reine and Ange-
wandte Mathematik, 133:97–178, 1908.

[29] D. F. Watson. Computing the n-Dimensional
Delaunay Triangulation with Application to
Voronoi Polotypes. The Computer Journal,
24(2):167–172, 1981.

10



A Complexity Analysis

Lemma A.1 The total number of in-circle-tests
required by the insertion of a new entity linked to k

neighbors is 4k − 6.

Proof: Each neighbor of the new entity, except the
three entities in the enclosing triangle, has been
detected by its two neighbors. Each detection re-
quires one in-circle-test, so 2 ∗ (k − 3) operations
should be performed. Moreover, the insertion re-
quires 2 additional in-circle-test by entity before to
end the algorithm. So, k∗2 additional in-circle-test
are necessary. Therefore, 2∗k+2∗(k−3) = 4∗k−6
operations are realized.

Lemma A.2 The number of in-circle-tests per-
formed by one neighbor of a new entity linked to
k neighbors is less than k.

Proof: Let z be the new entity and
{p0, p1, . . . pi, . . . pk} the set of neighbors of z

in DT (t + 1). The worst case is as follows:
(p0, p1, pk) is the triangle enclosing z and all
entities in ∇(p1 z pk) are discovered by one unique
entity (either p1 or pk). In this case, this entity
should realize k − 3 times the in-circle-test and
two additional in-circle-test for the end of the
algorithm.

Lemma A.3 The number of causal operations re-
quired by the insertion of a new entity linked to k

neighbors is less than k−3
2 .

Proof: Let z be the new entity and
{p0, p1, . . . pi, . . . pk} the set of neighbors of z

in DT (t + 1). The worst case occurs when the
length of the longest path between z and the
farthest entity is maximal. That is, this situation
occurs when the enclosing triangle is (p0, p1, pk).
In this case, the farthest entity is the entity which
lies on the middle of the path between p1 and pk,
so the entity p k−1

2
. The three first entities are

discovered without any causal operations. On the
contrary, all following detected neighbor requires
one causal operation, so at worst k−3

2 operations if
k is odd.

B Three Dimensional Stereopsis

Figure 7: Naked eye inversion stereopsis diagram
of a Delaunay triangulation in a three-dimensional
space.

11


